
NgRx Facade Pattern
The NgRx Facade Pattern was first introduced by Thomas Burleson in 2018
and has drawn a lot of attention in recent years. In this article, we will discuss
the pattern, how to implement it in Angular and discuss whether or not
we should implement it.

What is NgRx?

First, what is NgRx?
NgRx is a state management solution for Angular built on top of RxJS which
adheres to the redux pattern.

It contains an immutable centralized store where the state of our application
gets stored.

• We select slices of state from the Store using Selectors, which we

can then render in our components.
• We dispatch Actions to our Store.

• Our Store redirects our Action to our Reducers to recalculate our

state and replaces the state within our Store.

See the diagram below for an illustrated example:

https://thomasburlesonia.medium.com/ngrx-facades-better-state-management-82a04b9a1e39
https://ngrx.io/
https://images.ctfassets.net/zojzzdop0fzx/47DoERCCOydFc41438Q7xT/9fb4ec0fafb918fd96ebf76b17bb1108/ReduxPattern.png

This provides us with a tried and tested pattern for managing the state of our
application.

What is the Facade Pattern?

Now that we know what NgRx is, what is the Facade Pattern?

Well, what are Facades?
Facades are a pattern that provides a simple public interface to mask more
complex usage.

As we use NgRx more and more in our application, we add more actions and
more selectors that our components must use and track. This increases the
coupling between our component and the actions and selectors themselves.

The Facade pattern wants to simplify this approach by wrapping the NgRx
interactions in one place, allowing the Component to only ever interact with
the Facade. This means you are free to refactor the NgRx artefacts without
worrying about breaking your Components.

In Angular, NgRx Facades are simply services. They inject the NgRx Store
allowing you to contain your interactions with the Store in the service.

How do we implement it?

To begin with, let's show a Component that uses NgRx directly:

export class TodoListComponent implements OnInit {
 todoList$: Observable<Todo[]>;

 constructor(private store: Store<TodoListState>) {}

 ngOnInit() {
 this.todoList$ = this.store.select(getLoadedTodoList);

 this.loadTodoList();
 }

 loadTodoList() {
 this.store.dispatch(new LoadTodoList());

 }

 addNewTodo(todo: string) {
 this.store.dispatch(new AddTodo(todo));
 }

 editTodo(id: string, todo: string) {
 this.store.dispatch(new EditTodo({ id, todo }));
 }

 deleteTodo(id: string) {
 this.store.dispatch(new DeleteTodo(id));
 }
}
As we can see, this depends a lot on interactions with the Store and has
made our component fairly complex and coupled to NgRx.

Let's create a Facade that will encapsulate this interaction with NgRx:

@Injectable({
 providedIn: 'root',
})
export class TodoListFacade {
 todoList$ = this.store.select(getLoadedTodoList);

 constructor(private store: Store<TodoListState>) {}

 loadTodoList() {
 this.store.dispatch(new LoadTodoList());
 }

 addNewTodo(todo: string) {
 this.store.dispatch(new AddTodo(todo));
 }

 editTodo(id: string, todo: string) {
 this.store.dispatch(new EditTodo({ id, todo }));
 }

 deleteTodo(id: string) {
 this.store.dispatch(new DeleteTodo(id));

 }
}
It's essentially everything we had in the component, except now in a service.

We then inject this service into our Component:

export class TodoListComponent implements OnInit {
 todoList$: Observable<Todo[]>;

 constructor(private todoListFacade: TodoListFacade) {}

 ngOnInit() {
 this.todoList$ = this.todoListFacade.todoList$;

 this.todoListFacade.loadTodoList();
 }

 addNewTodo(todo: string) {
 this.todoListFacade.addNewTodo(todo);
 }

 editTodo(id: string, todo: string) {
 this.todoListFacade.editTodo({ id, todo }));
 }

 deleteTodo(id: string) {
 this.todoListFacade.deleteTodo(id);
 }
}
By implementing the Facade and using it in our Component, our component
no longer depends on NgRx and we do not have to import all actions and
selectors.

The Facade hides those implementation details, keeping our Component
cleaner and easier tested.

Pros

What are some advantages of using Facades?

• It adds a single abstraction of a section of the Store.

o This service can be used by any component that needs to interact
with this section of the store. For example, if another component
needs to access the TodoListState from our example above,

they do not have to reimplement the action dispatch or state
selector code. It's all readily available in the Facade.

• Facades are scalable
o As Facades are just services, we can compose them within other

Facades allowing us to maintain the encapsulation and hide
complex logic that interacts directly with NgRx, leaving us with an
API that our developers can consume.

Cons

• Facades lead to reusing Actions.
o Mike Ryan gave a talk at ng-conf 2018 on Good Action

Hygiene which promotes creating as many actions as possible
that dictate how your user is using your app and allowing NgRx to
update the state of the application from your user's interactions.

o Facades force actions to be reused. This becomes a problem as
we no longer update state based on the user's interactions.
Instead, we create a coupling between our actions and various
component areas within our application.

o Therefore, by changing one action and one accompanying
reducer, we could be impacting a significant portion of our
application.

• We lose indirection
o Indirection is when a portion of our app is responsible for certain

logic, and the other pieces of our app (the view layer etc.)
communicate with it via messages.

o In NgRx, this means that our Effects or Reducers do not know
what told them to work; they just know they have to.

o With Facades, we hide this indirection as only the service knows
about how the state is being updated.

• Knowledge Cost
o It becomes more difficult for junior developers to understand how

to interact, update and work with NgRx if their only interactions
with the state management solution are through Facades.

https://www.youtube.com/watch?v=JmnsEvoy-gY
https://www.youtube.com/watch?v=JmnsEvoy-gY

o It also becomes more difficult for them to write new Actions,
Reducers and Selectors as they may not have been exposed to
them before.

Conclusion

Hopefully, this gives you an introduction to NgRx Facades and the pros and
cons of using them. This should help you evaluate whether to use them or not.

	NgRx Facade Pattern
	What is NgRx?
	What is the Facade Pattern?
	How do we implement it?
	Pros
	Cons
	Conclusion

